3.5.9 \(\int \frac {(a+a \sin (e+f x))^m}{(c-c \sin (e+f x))^2} \, dx\) [409]

Optimal. Leaf size=86 \[ \frac {2^{\frac {1}{2}+m} \, _2F_1\left (-\frac {3}{2},\frac {1}{2}-m;-\frac {1}{2};\frac {1}{2} (1-\sin (e+f x))\right ) \sec ^3(e+f x) (1+\sin (e+f x))^{\frac {1}{2}-m} (a+a \sin (e+f x))^{1+m}}{3 a c^2 f} \]

[Out]

1/3*2^(1/2+m)*hypergeom([-3/2, 1/2-m],[-1/2],1/2-1/2*sin(f*x+e))*sec(f*x+e)^3*(1+sin(f*x+e))^(1/2-m)*(a+a*sin(
f*x+e))^(1+m)/a/c^2/f

________________________________________________________________________________________

Rubi [A]
time = 0.10, antiderivative size = 86, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 4, integrand size = 26, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.154, Rules used = {2815, 2768, 72, 71} \begin {gather*} \frac {2^{m+\frac {1}{2}} \sec ^3(e+f x) (\sin (e+f x)+1)^{\frac {1}{2}-m} (a \sin (e+f x)+a)^{m+1} \, _2F_1\left (-\frac {3}{2},\frac {1}{2}-m;-\frac {1}{2};\frac {1}{2} (1-\sin (e+f x))\right )}{3 a c^2 f} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(a + a*Sin[e + f*x])^m/(c - c*Sin[e + f*x])^2,x]

[Out]

(2^(1/2 + m)*Hypergeometric2F1[-3/2, 1/2 - m, -1/2, (1 - Sin[e + f*x])/2]*Sec[e + f*x]^3*(1 + Sin[e + f*x])^(1
/2 - m)*(a + a*Sin[e + f*x])^(1 + m))/(3*a*c^2*f)

Rule 71

Int[((a_) + (b_.)*(x_))^(m_)*((c_) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[((a + b*x)^(m + 1)/(b*(m + 1)*(b/(b*c
 - a*d))^n))*Hypergeometric2F1[-n, m + 1, m + 2, (-d)*((a + b*x)/(b*c - a*d))], x] /; FreeQ[{a, b, c, d, m, n}
, x] && NeQ[b*c - a*d, 0] &&  !IntegerQ[m] &&  !IntegerQ[n] && GtQ[b/(b*c - a*d), 0] && (RationalQ[m] ||  !(Ra
tionalQ[n] && GtQ[-d/(b*c - a*d), 0]))

Rule 72

Int[((a_) + (b_.)*(x_))^(m_)*((c_) + (d_.)*(x_))^(n_), x_Symbol] :> Dist[(c + d*x)^FracPart[n]/((b/(b*c - a*d)
)^IntPart[n]*(b*((c + d*x)/(b*c - a*d)))^FracPart[n]), Int[(a + b*x)^m*Simp[b*(c/(b*c - a*d)) + b*d*(x/(b*c -
a*d)), x]^n, x], x] /; FreeQ[{a, b, c, d, m, n}, x] && NeQ[b*c - a*d, 0] &&  !IntegerQ[m] &&  !IntegerQ[n] &&
(RationalQ[m] ||  !SimplerQ[n + 1, m + 1])

Rule 2768

Int[(cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.), x_Symbol] :> Dist[a^2*(
(g*Cos[e + f*x])^(p + 1)/(f*g*(a + b*Sin[e + f*x])^((p + 1)/2)*(a - b*Sin[e + f*x])^((p + 1)/2))), Subst[Int[(
a + b*x)^(m + (p - 1)/2)*(a - b*x)^((p - 1)/2), x], x, Sin[e + f*x]], x] /; FreeQ[{a, b, e, f, g, m, p}, x] &&
 EqQ[a^2 - b^2, 0] &&  !IntegerQ[m]

Rule 2815

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((c_) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_.), x_Symbol] :> Di
st[a^m*c^m, Int[Cos[e + f*x]^(2*m)*(c + d*Sin[e + f*x])^(n - m), x], x] /; FreeQ[{a, b, c, d, e, f, n}, x] &&
EqQ[b*c + a*d, 0] && EqQ[a^2 - b^2, 0] && IntegerQ[m] &&  !(IntegerQ[n] && ((LtQ[m, 0] && GtQ[n, 0]) || LtQ[0,
 n, m] || LtQ[m, n, 0]))

Rubi steps

\begin {align*} \int \frac {(a+a \sin (e+f x))^m}{(c-c \sin (e+f x))^2} \, dx &=\frac {\int \sec ^4(e+f x) (a+a \sin (e+f x))^{2+m} \, dx}{a^2 c^2}\\ &=\frac {\left (\sec ^3(e+f x) (a-a \sin (e+f x))^{3/2} (a+a \sin (e+f x))^{3/2}\right ) \text {Subst}\left (\int \frac {(a+a x)^{-\frac {1}{2}+m}}{(a-a x)^{5/2}} \, dx,x,\sin (e+f x)\right )}{c^2 f}\\ &=\frac {\left (2^{-\frac {1}{2}+m} \sec ^3(e+f x) (a-a \sin (e+f x))^{3/2} (a+a \sin (e+f x))^{1+m} \left (\frac {a+a \sin (e+f x)}{a}\right )^{\frac {1}{2}-m}\right ) \text {Subst}\left (\int \frac {\left (\frac {1}{2}+\frac {x}{2}\right )^{-\frac {1}{2}+m}}{(a-a x)^{5/2}} \, dx,x,\sin (e+f x)\right )}{c^2 f}\\ &=\frac {2^{\frac {1}{2}+m} \, _2F_1\left (-\frac {3}{2},\frac {1}{2}-m;-\frac {1}{2};\frac {1}{2} (1-\sin (e+f x))\right ) \sec ^3(e+f x) (1+\sin (e+f x))^{\frac {1}{2}-m} (a+a \sin (e+f x))^{1+m}}{3 a c^2 f}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C] Result contains higher order function than in optimal. Order 6 vs. order 5 in optimal.
time = 6.25, size = 5391, normalized size = 62.69 \begin {gather*} \text {Result too large to show} \end {gather*}

Warning: Unable to verify antiderivative.

[In]

Integrate[(a + a*Sin[e + f*x])^m/(c - c*Sin[e + f*x])^2,x]

[Out]

Result too large to show

________________________________________________________________________________________

Maple [F]
time = 1.34, size = 0, normalized size = 0.00 \[\int \frac {\left (a +a \sin \left (f x +e \right )\right )^{m}}{\left (c -c \sin \left (f x +e \right )\right )^{2}}\, dx\]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a+a*sin(f*x+e))^m/(c-c*sin(f*x+e))^2,x)

[Out]

int((a+a*sin(f*x+e))^m/(c-c*sin(f*x+e))^2,x)

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*sin(f*x+e))^m/(c-c*sin(f*x+e))^2,x, algorithm="maxima")

[Out]

integrate((a*sin(f*x + e) + a)^m/(c*sin(f*x + e) - c)^2, x)

________________________________________________________________________________________

Fricas [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*sin(f*x+e))^m/(c-c*sin(f*x+e))^2,x, algorithm="fricas")

[Out]

integral(-(a*sin(f*x + e) + a)^m/(c^2*cos(f*x + e)^2 + 2*c^2*sin(f*x + e) - 2*c^2), x)

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \frac {\int \frac {\left (a \sin {\left (e + f x \right )} + a\right )^{m}}{\sin ^{2}{\left (e + f x \right )} - 2 \sin {\left (e + f x \right )} + 1}\, dx}{c^{2}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*sin(f*x+e))**m/(c-c*sin(f*x+e))**2,x)

[Out]

Integral((a*sin(e + f*x) + a)**m/(sin(e + f*x)**2 - 2*sin(e + f*x) + 1), x)/c**2

________________________________________________________________________________________

Giac [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*sin(f*x+e))^m/(c-c*sin(f*x+e))^2,x, algorithm="giac")

[Out]

integrate((a*sin(f*x + e) + a)^m/(c*sin(f*x + e) - c)^2, x)

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.01 \begin {gather*} \int \frac {{\left (a+a\,\sin \left (e+f\,x\right )\right )}^m}{{\left (c-c\,\sin \left (e+f\,x\right )\right )}^2} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a + a*sin(e + f*x))^m/(c - c*sin(e + f*x))^2,x)

[Out]

int((a + a*sin(e + f*x))^m/(c - c*sin(e + f*x))^2, x)

________________________________________________________________________________________